Search results
Results from the WOW.Com Content Network
Directional selection can be observed in finch beak size, peppered moth color, African cichlid mouth types, and sockeye salmon migration periods. If there is continuous allele frequency change as a result of directional selection generation from generation, there will be observable changes in the phenotypes of the entire population over time.
Disruptive selection is a specific type of natural selection that actively selects against the intermediate in a population, favoring both extremes of the spectrum. Disruptive selection is inferred to oftentimes lead to sympatric speciation through a phyletic gradualism mode of evolution. Disruptive selection can be caused or influenced by ...
Selection can be divided into three classes, on the basis of its effect on allele frequencies: directional, stabilizing, and disruptive selection. [103] Directional selection occurs when an allele has a greater fitness than others, so that it increases in frequency, gaining an increasing share in the population.
The existence of limits in artificial selection experiments was discussed in the scientific literature in the 1940s or earlier. [1] The most obvious possible cause of reaching a limit (or plateau) when a population is under continued directional selection is that all of the additive-genetic variation (see additive genetic effects) related to that trait gets "used up" or fixed. [2]
The first is directional selection, which is a shift in the average value of a trait over time—for example, organisms slowly getting taller. [80] Secondly, disruptive selection is selection for extreme trait values and often results in two different values becoming most common, with selection against the average value. This would be when ...
Stabilizing selection (not to be confused with negative or purifying selection [1] [2]) is a type of natural selection in which the population mean stabilizes on a particular non-extreme trait value. This is thought to be the most common mechanism of action for natural selection because most traits do not appear to change drastically over time ...
The first and most common function to estimate fitness of a trait is linear ω =α +βz, which represents directional selection. [1] [10] The slope of the linear regression line (β) is the selection gradient, ω is the fitness of a trait value z, and α is the y-intercept of the fitness function.
The McDonald–Kreitman test [1] is a statistical test often used by evolutionary and population biologists to detect and measure the amount of adaptive evolution within a species by determining whether adaptive evolution has occurred, and the proportion of substitutions that resulted from positive selection (also known as directional selection).