Search results
Results from the WOW.Com Content Network
Helium–neon laser at the University of Chemnitz, Germany. A helium–neon laser or He–Ne laser is a type of gas laser whose high energetic gain medium consists of a mixture of helium and neon (ratio between 5:1 and 20:1) at a total pressure of approximately 1 Torr (133 Pa) inside a small electrical discharge.
Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The height of the lines and bars gives an indication of the maximal power/pulse energy commercially available, while the color codifies the type of laser material (see the figure description for details).
The type of pump source used principally depends on the gain medium, and this also determines how the energy is transmitted to the medium. A helium–neon (HeNe) laser uses an electrical discharge in the helium-neon gas mixture, a Nd:YAG laser uses either light focused from a xenon flash lamp or diode lasers, and excimer lasers use a chemical ...
A four-level laser energy diagram. Here, there are four energy levels, energies E 1, E 2, E 3, E 4, and populations N 1, N 2, N 3, N 4, respectively. The energies of each level are such that E 1 < E 2 < E 3 < E 4. In this system, the pumping transition P excites the atoms in the ground state (level 1) into the pump band (level 4).
The gas laser was the first continuous-light laser and the first laser to operate on the principle of converting electrical energy to a laser light output. The first gas laser, the Helium–neon laser (HeNe), was co-invented by Iranian engineer and scientist Ali Javan and American physicist William R. Bennett, Jr., in 1960. It produced a ...
In laser physics, gain or amplification is a process where the medium transfers part of its energy to the emitted electromagnetic radiation, resulting in an increase in optical power. This is the basic principle of all lasers. Quantitatively, gain is a measure of the ability of a laser medium to increase optical power. However, overall a laser ...
The energy difference is lost to heat, which may carry away the excess entropy delivered by the multimode incoherent pump. The quantum defect of a laser can be defined as the part of the energy of the pumping photon which is lost (not turned into photons at the lasing wavelength) in the gain medium during lasing. [1]
This equation is obtained from combining the Rydberg formula for any hydrogen-like element (shown below) with E = hν = hc / λ assuming that the principal quantum number n above = n 1 in the Rydberg formula and n 2 = ∞ (principal quantum number of the energy level the electron descends from, when emitting a photon).