enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Longest palindromic substring - Wikipedia

    en.wikipedia.org/wiki/Longest_palindromic_substring

    Alternative ()-time solutions were provided by Jeuring (1994), and by Gusfield (1997), who described a solution based on suffix trees. A faster algorithm can be achieved in the word RAM model of computation if the size σ {\displaystyle \sigma } of the input alphabet is in 2 o ( log ⁡ n ) {\displaystyle 2^{o(\log n)}} .

  3. Boyer–Moore string-search algorithm - Wikipedia

    en.wikipedia.org/wiki/Boyer–Moore_string-search...

    P denotes the string to be searched for, called the pattern. Its length is m. S[i] denotes the character at index i of string S, counting from 1. S[i..j] denotes the substring of string S starting at index i and ending at j, inclusive. A prefix of S is a substring S[1..i] for some i in range [1, l], where l is the length of S.

  4. Longest alternating subsequence - Wikipedia

    en.wikipedia.org/wiki/Longest_Alternating...

    The longest alternating subsequence problem has also been studied in the setting of online algorithms, in which the elements of are presented in an online fashion, and a decision maker needs to decide whether to include or exclude each element at the time it is first presented, without any knowledge of the elements that will be presented in the future, and without the possibility of recalling ...

  5. Ternary search - Wikipedia

    en.wikipedia.org/wiki/Ternary_search

    def ternary_search (f, left, right, absolute_precision)-> float: """Find maximum of unimodal function f() within [left, right]. To find the minimum, reverse the if/else statement or reverse the comparison. """ while abs (right-left) >= absolute_precision: left_third = left + (right-left) / 3 right_third = right-(right-left) / 3 if f (left_third) < f (right_third): left = left_third else: right ...

  6. Shunting yard algorithm - Wikipedia

    en.wikipedia.org/wiki/Shunting_yard_algorithm

    In computer science, the shunting yard algorithm is a method for parsing arithmetical or logical expressions, or a combination of both, specified in infix notation.It can produce either a postfix notation string, also known as reverse Polish notation (RPN), or an abstract syntax tree (AST). [1]

  7. Heap's algorithm - Wikipedia

    en.wikipedia.org/wiki/Heap's_algorithm

    A map of the 24 permutations and the 23 swaps used in Heap's algorithm permuting the four letters A (amber), B (blue), C (cyan) and D (dark red) Wheel diagram of all permutations of length = generated by Heap's algorithm, where each permutation is color-coded (1=blue, 2=green, 3=yellow, 4=red).

  8. de Bruijn sequence - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_sequence

    For example, a digital door lock with a 4-digit code (each digit having 10 possibilities, from 0 to 9) would have B (10, 4) solutions, with length 10 000. Therefore, only at most 10 000 + 3 = 10 003 (as the solutions are cyclic) presses are needed to open the lock, whereas trying all codes separately would require 4 × 10 000 = 40 000 presses.

  9. String operations - Wikipedia

    en.wikipedia.org/wiki/String_operations

    A string homomorphism (often referred to simply as a homomorphism in formal language theory) is a string substitution such that each character is replaced by a single string. That is, f ( a ) = s {\displaystyle f(a)=s} , where s {\displaystyle s} is a string, for each character a {\displaystyle a} .