Search results
Results from the WOW.Com Content Network
Chromatin is a complex of DNA and protein found in eukaryotic cells. [1] The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in reinforcing the DNA during cell division , preventing DNA damage , and regulating gene expression ...
The solenoid structure's most obvious function is to help package the DNA so that it is small enough to fit into the nucleus. This is a big task as the nucleus of a mammalian cell has a diameter of approximately 6 μm, whilst the DNA in one human cell would stretch to just over 2 metres long if it were unwound. [6]
However, in order for the cell to function, proteins must be able to access the sequence information contained within the DNA, in spite of its tightly-packed nature. Hence, the cell has a number of mechanisms in place to control how DNA is organized. [4] Moreover, nuclear organization can play a role in establishing cell identity.
Since then, over several decades, chromatin theory has evolved. Chromatin subunit models as well as the notion of the nucleosome were established in 1973 and 1974, respectively. [2] Richmond and his research group has been able to elucidate the crystal structure of the histone octamer with DNA wrapped up around it at a resolution of 7 Å in ...
S/MAR-functions: constitutive and facultative. A chromatin domain with constitutive S/MARs at its termini (I). When functional demands require the specific translocation of the constituent gene to the matrix, facultative S/MARs responds to topological changes which are initiated by the association of transcription factors (TF) and supported by histone acetylation.
The extreme length (a chromosome may contain a 10 cm long DNA strand), relative rigidity and helical structure of DNA has led to the evolution of histones and of enzymes such as topoisomerases and helicases to manage a cell's DNA. The properties of DNA are closely related to its molecular structure and sequence, particularly the weakness of the ...
Basic units of chromatin structure. In molecular biology, a chromatosome is a result of histone H1 binding to a nucleosome, which contains a histone octamer and DNA. [1] The chromatosome contains 166 base pairs of DNA. 146 base pairs are from the DNA wrapped around the histone core of the nucleosome.
About 147 bp of DNA is wrapped around the octamer to form a nucleosome. Nucleosomes can be arrayed in the loosely packed beads-on-a-string form of chromatin, but are generally more tightly packaged into the 30-nm fiber. Fiber formation requires histone tails and additional proteins, neither of which is shown here. [1]