Search results
Results from the WOW.Com Content Network
The weld pool is central to the success of the welding process. It was first observed in oxy-fuel welding by Fouché & Picard in 1903, after the discovery of acetylene by Edmund Davy in 1836. The weld pool must be carried along the joint in a consistent width and depth, and the motion used to carry the weld pool has a direct effect on the ...
Welding joins two pieces of metal using heat, pressure, or both. The most common modern welding methods use heat sufficient to melt the base metals to be joined and the filler metal. This includes gas welding and all forms of arc welding. The area where the base and filler metals melt is called the weld pool or puddle.
Once part of the weld pool, the slag floats to the surface and protects the weld from contamination as it solidifies. Once hardened, it must be chipped away to reveal the finished weld. As welding progresses and the electrode melts, the welder must periodically stop welding to remove the remaining electrode stub and insert a new electrode into ...
TIP TIG welding torch. TIP TIG is a subset of gas tungsten arc welding (GTAW), using a mechanism called filler wire agitation to enhance molten weld pool dynamics. This agitation has been found to enhance the weld puddle fluidity and release evolving gases, reducing the chances of inclusions and porosity, and also separate impurities.
Magnetic arc blow or "arc wander" is the deflection of welding filler material within an electric arc deposit by a buildup of magnetic force surrounding the weld pool. Magnetic arc blow can occur because of: Workpiece connection; Joint design; Poor fit-up; Improper settings; Atmospheric conditions
Shielding gases are inert or semi-inert gases that are commonly used in several welding processes, most notably gas metal arc welding and gas tungsten arc welding (GMAW and GTAW, more popularly known as MIG (Metal Inert Gas) and TIG (Tungsten Inert Gas), respectively). Their purpose is to protect the weld area from oxygen, and water vapour ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In the 1930s metallurgists Albert Portevin and D. Seferian attempted to experimentally determine heat transfer characteristics in welding. [1] They correlated the effects of several factors—material properties, welding process, and part dimensions—on temperature distribution, by performing oxyacetylene (gas) and covered electrode (arc) welds on plates and bars of various profiles, and ...