enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus , Newton's method (also called Newton–Raphson ) is an iterative method for finding the roots of a differentiable function f {\displaystyle f} , which are solutions to the equation f ( x ) = 0 {\displaystyle f(x)=0} .

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    It is easy to find situations for which Newton's method oscillates endlessly between two distinct values. For example, for Newton's method as applied to a function f to oscillate between 0 and 1, it is only necessary that the tangent line to f at 0 intersects the x-axis at 1 and that the tangent line to f at 1 intersects the x-axis at 0. [19]

  4. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    It has similarities with Quasi-Newton methods. Conditional gradient method (Frank–Wolfe) for approximate minimization of specially structured problems with linear constraints, especially with traffic networks. For general unconstrained problems, this method reduces to the gradient method, which is regarded as obsolete (for almost all problems).

  5. Line search - Wikipedia

    en.wikipedia.org/wiki/Line_search

    The line-search method first finds a descent direction along which the objective function will be reduced, and then computes a step size that determines how far should move along that direction. The descent direction can be computed by various methods, such as gradient descent or quasi-Newton method. The step size can be determined either ...

  6. Yurii Nesterov - Wikipedia

    en.wikipedia.org/wiki/Yurii_Nesterov

    His work with Arkadi Nemirovski in their 1994 book [13] is the first to point out that the interior point method can solve convex optimization problems, and the first to make a systematic study of semidefinite programming (SDP). Also in this book, they introduced the self-concordant functions which are useful in the analysis of Newton's method ...

  7. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    In a quasi-Newton method, such as that due to Davidon, Fletcher and Powell or Broyden–Fletcher–Goldfarb–Shanno (BFGS method) an estimate of the full Hessian is built up numerically using first derivatives only so that after n refinement cycles the method closely approximates to Newton's method in performance. Note that quasi-Newton ...

  8. Top 20 most reviewed books of all time from Amazon - AOL

    www.aol.com/lifestyle/2017-08-22-top-20-most...

    From cult classics such as Harry Potter to New York Times Best Sellers, these 20 reads have more customer reviews than any other books on Amazon! Shop most reviewed Amazon books.

  9. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    [7]: chpt.11 Newton's method can be combined with line search for an appropriate step size, and it can be mathematically proven to converge quickly. Other efficient algorithms for unconstrained minimization are gradient descent (a special case of steepest descent).