Search results
Results from the WOW.Com Content Network
Let and be Hilbert spaces, and let : be an unbounded operator from into . Suppose that is a closed operator and that is densely defined, that is, is dense in . Let T ∗ : dom ( T ∗ ) ⊆ H → G {\displaystyle T^{*}:\operatorname {dom} \left(T^{*}\right)\subseteq H\to G} denote the adjoint of T . {\displaystyle T.}
A Hilbert space is a vector space equipped with an inner product operation, which allows lengths and angles to be defined. Furthermore, Hilbert spaces are complete, which means that there are enough limits in the space to allow the techniques of calculus to be used. A Hilbert space is a special case of a Banach space.
In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : H → H that commutes with its Hermitian adjoint N*, that is: NN* = N*N. [1] Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood.
The simplest example of a direct integral are the L 2 spaces associated to a (σ-finite) countably additive measure μ on a measurable space X.Somewhat more generally one can consider a separable Hilbert space H and the space of square-integrable H-valued functions
A rigged Hilbert space is a pair (H, Φ) with H a Hilbert space, Φ a dense subspace, such that Φ is given a topological vector space structure for which the inclusion map:, is continuous. [ 4 ] [ 5 ] Identifying H with its dual space H * , the adjoint to i is the map i ∗ : H = H ∗ → Φ ∗ . {\displaystyle i^{*}:H=H^{*}\to \Phi ^{*}.}
A feature map is a map :, where is a Hilbert space which we will call the feature space. The first sections presented the connection between bounded/continuous evaluation functions, positive definite functions, and integral operators and in this section we provide another representation of the RKHS in terms of feature maps.
The space of bounded linear operators B(X) on a Banach space X is an example of a unital Banach algebra. Since the definition of the spectrum does not mention any properties of B ( X ) except those that any such algebra has, the notion of a spectrum may be generalised to this context by using the same definition verbatim.
In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators (representable by finite-dimensional matrices) in the topology induced by the operator norm.