Search results
Results from the WOW.Com Content Network
In mathematics, a fundamental theorem is a theorem which is considered to be central and conceptually important for some topic. For example, the fundamental theorem of calculus gives the relationship between differential calculus and integral calculus . [ 1 ]
Fundamental theorem of algebra (complex analysis) Fundamental theorem of arbitrage-free pricing (financial mathematics) Fundamental theorem of arithmetic (number theory) Fundamental theorem of calculus ; Fundamental theorem on homomorphisms (abstract algebra) Fundamental theorems of welfare economics ; Furry's theorem (quantum field theory)
This category includes theorems on the foundational aspects of mathematics, including: mathematical logic, model theory, set theory, some general topology and category theory. Subcategories This category has only the following subcategory.
An extension of a work of Hellmuth Kneser on the Fundamental Theorem of Algebra). Ostrowski, Alexander (1920), "Über den ersten und vierten Gaußschen Beweis des Fundamental-Satzes der Algebra", Carl Friedrich Gauss Werke Band X Abt. 2 (tr. On the first and fourth Gaussian proofs of the Fundamental Theorem of Algebra).
Euler's theorem; Five color theorem; Five lemma; Fundamental theorem of arithmetic; Gauss–Markov theorem (brief pointer to proof) Gödel's incompleteness theorem. Gödel's first incompleteness theorem; Gödel's second incompleteness theorem; Goodstein's theorem; Green's theorem (to do) Green's theorem when D is a simple region; Heine–Borel ...
Soundness theorem; Gödel's completeness theorem. Original proof of Gödel's completeness theorem; Compactness theorem; Löwenheim–Skolem theorem. Skolem's paradox; Gödel's incompleteness theorems; Structure (mathematical logic) Interpretation (logic) Substructure (mathematics) Elementary substructure. Skolem hull; Non-standard model; Atomic ...
In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3] [4] [5] For example,
This page was last edited on 23 December 2024, at 18:28 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.