Search results
Results from the WOW.Com Content Network
In mathematics, a fundamental theorem is a theorem which is considered to be central and conceptually important for some topic. For example, the fundamental theorem of calculus gives the relationship between differential calculus and integral calculus . [ 1 ]
Fundamental theorem of algebra (complex analysis) Fundamental theorem of arbitrage-free pricing (financial mathematics) Fundamental theorem of arithmetic (number theory) Fundamental theorem of calculus ; Fundamental theorem on homomorphisms (abstract algebra) Fundamental theorems of welfare economics ; Furry's theorem (quantum field theory)
Euler's theorem; Five color theorem; Five lemma; Fundamental theorem of arithmetic; Gauss–Markov theorem (brief pointer to proof) Gödel's incompleteness theorem. Gödel's first incompleteness theorem; Gödel's second incompleteness theorem; Goodstein's theorem; Green's theorem (to do) Green's theorem when D is a simple region; Heine–Borel ...
This page was last edited on 1 October 2020, at 18:19 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
The fundamental theorem of calculus is a theorem that links the concept of differentiating a function (calculating its slopes, or rate of change at each point in time) with the concept of integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). Roughly speaking, the two operations can be ...
In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3] [4] [5] For example,
The fact that a complex solution always exists is the fundamental theorem of algebra, which was proved only at the beginning of the 19th century and does not have a purely algebraic proof. Nevertheless, the main concern of the algebraists was to solve in terms of radicals, that is to express the solutions by a formula which is built with the ...