Search results
Results from the WOW.Com Content Network
An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the special case of an isosceles triangle by modern definition, creating more special properties.
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
All regular simple polygons (a simple polygon is one that does not intersect itself anywhere) are convex. Those having the same number of sides are also similar. An n-sided convex regular polygon is denoted by its Schläfli symbol {}. For <, we have two degenerate cases: Monogon {1} Degenerate in ordinary space.
The trigonometry formulas of right triangles also give the relations between the sides s and the angles A of an equilateral triangle (a triangle where all sides have the same length and all angles are equal). The relations are: = ()
Given an equilateral triangle ABC in the plane, and a point P in the plane of the triangle ABC, the lengths PA, PB, and PC form the sides of a (maybe, degenerate) triangle. [1] [2] Proof of Pompeiu's theorem with Pompeiu triangle ′ The proof is quick. Consider a rotation of 60° about the point B.
In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
The Yanmouti sets are defined as the convex hulls of an equilateral triangle together with three circular arcs, centered at the triangle vertices and spanning the same angle as the triangle, with equal radii that are at most equal to the side length of the triangle. Thus, when the radius is small enough, these sets degenerate to the equilateral ...