Search results
Results from the WOW.Com Content Network
The everyday approximation 3.14 has three significant figures and 7 correct binary digits. The approximation 22/7 has the same three correct decimal digits but has 10 correct binary digits. Most calculators and computer programs can handle the 16-digit expansion 3.141592653589793, which is sufficient for interplanetary navigation calculations. [5]
Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal to 0) is used.
The next rational number (ordered by size of denominator) that is a better rational approximation of π is 52 163 / 16 604 , though it is still only correct to six decimal places. To be accurate to seven decimal places, one needs to go as far as 86 953 / 27 678 . For eight, 102 928 / 32 763 is needed. [2]
Any real number can be written in the form m × 10 ^ n in many ways: for example, 350 can be written as 3.5 × 10 2 or 35 × 10 1 or 350 × 10 0. In normalized scientific notation (called "standard form" in the United Kingdom), the exponent n is chosen so that the absolute value of m remains at least one but less than ten ( 1 ≤ | m | < 10 ).
Here the 'IEEE 754 double value' resulting of the 15 bit figure is 3.330560653658221E-15, which is rounded by Excel for the 'user interface' to 15 digits 3.33056065365822E-15, and then displayed with 30 decimals digits gets one 'fake zero' added, thus the 'binary' and 'decimal' values in the sample are identical only in display, the values ...
In some contexts it is desirable to round a given number x to a "neat" fraction – that is, the nearest fraction y = m/n whose numerator m and denominator n do not exceed a given maximum. This problem is fairly distinct from that of rounding a value to a fixed number of decimal or binary digits, or to a multiple of a given unit m .
For example, 1.5 × 10 6 means that the true value of something being measured is 1,500,000 to the nearest hundred thousand (so the actual value is somewhere between 1,450,000 and 1,550,000); this is in contrast to the notation 1.500 × 10 6, which means that the true value is 1,500,000 to the nearest thousand (implying that the true value is ...
The magnitude of such precision (152 decimal places) can be put into context by the fact that the circumference of the largest known object, the observable universe, can be calculated from its diameter (93 billion light-years) to a precision of less than one Planck length (at 1.6162 × 10 −35 meters, the shortest unit of length expected to be ...