enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Series and parallel circuits - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_circuits

    Parallel resistance is illustrated by the circulatory system. Each organ is supplied by an artery that branches off the aorta. The total resistance of this parallel arrangement is expressed by the following equation: 1/R total = 1/R a + 1/R b + ... + 1/R n. R a, R b, and R n are the resistances of the renal, hepatic, and other arteries ...

  3. Load regulation - Wikipedia

    en.wikipedia.org/wiki/Load_regulation

    The values of the resistors are selected such that R 1 gives the highest load resistance, R 1 ||R 2 gives the nominal load resistance and either R 1 ||R 2 ||R 3 or R 2 ||R 3 gives the lowest load resistance. A voltmeter is then connected in parallel to the resistors and the measured values of voltage for each load state can be used to calculate ...

  4. Equivalent impedance transforms - Wikipedia

    en.wikipedia.org/wiki/Equivalent_impedance...

    One-element networks are trivial and two-element, [note 3] two-terminal networks are either two elements in series or two elements in parallel, also trivial. The smallest number of elements that is non-trivial is three, and there are two 2-element-kind non-trivial transformations possible, one being both the reverse transformation and the topological dual, of the other.

  5. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.

  6. Thévenin's theorem - Wikipedia

    en.wikipedia.org/wiki/Thévenin's_theorem

    The answer is not obvious, since the terminal voltage will not be V θ after Z e is connected. Instead, we imagine that we attach, in series with impedance Z e, a source with electromotive force E equal to V θ but directed to oppose V θ, as shown in Figure 2b. No current will then flow through Z e since E balances V θ.

  7. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    Ohm's law states that the electric current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, [1] one arrives at the three mathematical equations used to describe this relationship: [2]

  8. Norton's theorem - Wikipedia

    en.wikipedia.org/wiki/Norton's_theorem

    In the example, the total current I total is given by: = + (+) =. The current through the load is then, using the current divider rule: = + + + = / =. And the equivalent resistance looking back into the circuit is:

  9. Two capacitor paradox - Wikipedia

    en.wikipedia.org/wiki/Two_capacitor_paradox

    Two identical capacitors are connected in parallel with an open switch between them. One of the capacitors is charged with a voltage of V i {\displaystyle V_{i}} , the other is uncharged. When the switch is closed, some of the charge Q = C V i {\displaystyle Q=CV_{i}} on the first capacitor flows into the second, reducing the voltage on the ...