enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Importance sampling - Wikipedia

    en.wikipedia.org/wiki/Importance_sampling

    Importance sampling is a variance reduction technique that can be used in the Monte Carlo method.The idea behind importance sampling is that certain values of the input random variables in a simulation have more impact on the parameter being estimated than others.

  3. Cross-entropy method - Wikipedia

    en.wikipedia.org/wiki/Cross-Entropy_Method

    The cross-entropy (CE) method is a Monte Carlo method for importance sampling and optimization. It is applicable to both combinatorial and continuous problems, with either a static or noisy objective. The method approximates the optimal importance sampling estimator by repeating two phases: [1] Draw a sample from a probability distribution.

  4. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    A variety of data re-sampling techniques are implemented in the imbalanced-learn package [1] compatible with the scikit-learn Python library. The re-sampling techniques are implemented in four different categories: undersampling the majority class, oversampling the minority class, combining over and under sampling, and ensembling sampling.

  5. Monte Carlo integration - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_integration

    An illustration of Monte Carlo integration. In this example, the domain D is the inner circle and the domain E is the square. Because the square's area (4) can be easily calculated, the area of the circle (π*1.0 2) can be estimated by the ratio (0.8) of the points inside the circle (40) to the total number of points (50), yielding an approximation for the circle's area of 4*0.8 = 3.2 ≈ π.

  6. Particle filter - Wikipedia

    en.wikipedia.org/wiki/Particle_filter

    The sequential importance resampling technique provides another interpretation of the filtering transitions coupling importance sampling with the bootstrap resampling step. Last, but not least, particle filters can be seen as an acceptance-rejection methodology equipped with a recycling mechanism.

  7. Evidence lower bound - Wikipedia

    en.wikipedia.org/wiki/Evidence_lower_bound

    To maximize () [⁡ ()], we simply sample many (), i.e. use importance sampling [⁡ ()] ⁡ where is the number of samples drawn from the true distribution. This approximation can be seen as overfitting.

  8. What Is Depreciation? Importance and Calculation Methods ...

    www.aol.com/finance/depreciation-importance...

    Important considerations for real estate investors: Depreciation recapture: When selling a depreciated property, investors face a tax called depreciation recapture.

  9. Nested sampling algorithm - Wikipedia

    en.wikipedia.org/wiki/Nested_sampling_algorithm

    It is an alternative to methods from the Bayesian literature [3] such as bridge sampling and defensive importance sampling. Here is a simple version of the nested sampling algorithm, followed by a description of how it computes the marginal probability density Z = P ( D ∣ M ) {\displaystyle Z=P(D\mid M)} where M {\displaystyle M} is M 1 ...