enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Importance sampling - Wikipedia

    en.wikipedia.org/wiki/Importance_sampling

    Importance sampling is a variance reduction technique that can be used in the Monte Carlo method.The idea behind importance sampling is that certain values of the input random variables in a simulation have more impact on the parameter being estimated than others.

  3. Cross-entropy method - Wikipedia

    en.wikipedia.org/wiki/Cross-Entropy_Method

    The cross-entropy (CE) method is a Monte Carlo method for importance sampling and optimization. It is applicable to both combinatorial and continuous problems, with either a static or noisy objective. The method approximates the optimal importance sampling estimator by repeating two phases: [1] Draw a sample from a probability distribution.

  4. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    A variety of data re-sampling techniques are implemented in the imbalanced-learn package [1] compatible with the scikit-learn Python library. The re-sampling techniques are implemented in four different categories: undersampling the majority class, oversampling the minority class, combining over and under sampling, and ensembling sampling.

  5. What Is Depreciation? Importance and Calculation Methods ...

    www.aol.com/finance/depreciation-importance...

    Importance and Calculation Methods Explained. Allison Hache. ... If the company deducts the purchase as a business expense the same year it purchased the equipment — and generated $500,000 in ...

  6. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Analytics is the "extensive use of data, statistical and quantitative analysis, explanatory and predictive models, and fact-based management to drive decisions and actions." It is a subset of business intelligence, which is a set of technologies and processes that uses data to understand and analyze business performance to drive decision-making .

  7. Evidence lower bound - Wikipedia

    en.wikipedia.org/wiki/Evidence_lower_bound

    To maximize () [⁡ ()], we simply sample many (), i.e. use importance sampling [⁡ ()] ⁡ where is the number of samples drawn from the true distribution. This approximation can be seen as overfitting.

  8. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    A visual representation of the sampling process. In statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a statistical population to estimate characteristics of the whole population. The subset is meant to reflect the whole ...

  9. Estimation theory - Wikipedia

    en.wikipedia.org/wiki/Estimation_theory

    Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data.