enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cellular senescence - Wikipedia

    en.wikipedia.org/wiki/Cellular_senescence

    Cellular senescence is not observed in some organisms, including perennial plants, sponges, corals, and lobsters. In other organisms, where cellular senescence is observed, cells eventually become post-mitotic: they can no longer replicate themselves through the process of cellular mitosis (i.e., cells

  3. Hayflick limit - Wikipedia

    en.wikipedia.org/wiki/Hayflick_limit

    The typical normal human fetal cell will divide between 50 and 70 times before experiencing senescence. As the cell divides, the telomeres on the ends of chromosomes shorten. The Hayflick limit is the limit on cell replication imposed by the shortening of telomeres with each division. This end stage is known as cellular senescence.

  4. Immunosenescence - Wikipedia

    en.wikipedia.org/wiki/Immunosenescence

    Aging of the immune system is a controversial phenomenon. Senescence refers to replicative senescence from cell biology, which describes the condition when the upper limit of cell divisions (Hayflick limit) has been exceeded, and such cells commit apoptosis or lose their functional properties.

  5. Hallmarks of aging - Wikipedia

    en.wikipedia.org/wiki/Hallmarks_of_aging

    Senescence can be induced by several factors, including telomere shortening, [37] DNA damage [38] and stress. Since the immune system is programmed to seek out and eliminate senescent cells, [39] it might be that senescence is one way for the body to rid itself of cells damaged beyond repair. The links between cell senescence and aging are several:

  6. Senescence-associated secretory phenotype - Wikipedia

    en.wikipedia.org/wiki/Senescence-associated...

    The SASP in senescent neurons can vary according to cell type, the initiator of senescence, and the stage of senescence. [12] An online SASP Atlas serves as a guide to the various types of SASP. [8] SASP is one of the three main features of senescent cells, the other two features being arrested cell growth, and resistance to apoptosis. [13]

  7. Free-radical theory of aging - Wikipedia

    en.wikipedia.org/wiki/Free-radical_theory_of_aging

    One of the main criticisms of the free radical theory of aging is directed at the suggestion that free radicals are responsible for the damage of biomolecules, thus being a major reason for cellular senescence and organismal aging. [26]: 81 Several modifications have been proposed to integrate current research into the overall theory.

  8. Antagonistic pleiotropy hypothesis - Wikipedia

    en.wikipedia.org/wiki/Antagonistic_pleiotropy...

    Strength of natural selection plot as a function of age. The antagonistic pleiotropy hypothesis (APT) is a theory in evolutionary biology that suggests certain genes may confer beneficial effects early in an organism's life, enhancing reproductive success, while also causing detrimental effects later in life, contributing to the aging process.

  9. DNA damage theory of aging - Wikipedia

    en.wikipedia.org/wiki/DNA_damage_theory_of_aging

    If a cell retains DNA damage, transcription of a gene can be prevented and thus translation into a protein will also be blocked. Replication may also be blocked and/or the cell may die. Descriptions of reduced function, characteristic of aging and associated with accumulation of DNA damage, are described in the next section. [citation needed]