Search results
Results from the WOW.Com Content Network
An electromagnetic wave propagating along a path C has the phase shift over C as if it was propagating a path in a vacuum, length of which, is equal to the optical path length of C. Thus, if a wave is traveling through several different media, then the optical path length of each medium can be added to find the total optical path length.
The Feynman–Kac formula resulted, which proves rigorously the real-valued case of Feynman's path integrals. The complex case, which occurs when a particle's spin is included, is still an open question. [2] It offers a method of solving certain partial differential equations by simulating random paths of a stochastic process.
In celestial mechanics, Lambert's problem is concerned with the determination of an orbit from two position vectors and the time of flight, posed in the 18th century by Johann Heinrich Lambert and formally solved with mathematical proof by Joseph-Louis Lagrange. It has important applications in the areas of rendezvous, targeting, guidance, and ...
Every Fokker–Planck equation is equivalent to a path integral. The path integral formulation is an excellent starting point for the application of field theory methods. [26] This is used, for instance, in critical dynamics. A derivation of the path integral is possible in a similar way as in quantum mechanics.
This path difference is (+) (′). The two separate waves will arrive at a point (infinitely far from these lattice planes) with the same phase , and hence undergo constructive interference , if and only if this path difference is equal to any integer value of the wavelength , i.e. n λ = ( A B + B C ) − ( A C ′ ) {\displaystyle n\lambda ...
The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics.It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.
Path integral Monte Carlo (PIMC) is a quantum Monte Carlo method used to solve quantum statistical mechanics problems numerically within the path integral formulation. The application of Monte Carlo methods to path integral simulations of condensed matter systems was first pursued in a key paper by John A. Barker. [1] [2]
The complete two-body problem can be solved by re-formulating it as two one-body problems: a trivial one and one that involves solving for the motion of one particle in an external potential. Since many one-body problems can be solved exactly, the corresponding two-body problem can also be solved.