enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wien's displacement law - Wikipedia

    en.wikipedia.org/wiki/Wien's_displacement_law

    Formally, the wavelength version of Wien's displacement law states that the spectral radiance of black-body radiation per unit wavelength, peaks at the wavelength given by: = where T is the absolute temperature and b is a constant of proportionality called Wien's displacement constant, equal to 2.897 771 955... × 10 −3 m⋅K, [1] [2] or b ...

  3. Wien approximation - Wikipedia

    en.wikipedia.org/wiki/Wien_approximation

    Wien's approximation (also sometimes called Wien's law or the Wien distribution law) is a law of physics used to describe the spectrum of thermal radiation (frequently called the blackbody function). This law was first derived by Wilhelm Wien in 1896.

  4. Thermal remote sensing - Wikipedia

    en.wikipedia.org/wiki/Thermal_Remote_sensing

    Stefan–Boltzmann law: Surface temperature of any objects radiate energy and shows specific properties. These properties are calculated by Boltzmann law. 2. Wien's displacement law: Wien's displacement law explains the relation between temperature and the wavelength of radiation. It states that the wavelength of radiation emitted from a ...

  5. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    A consequence of Wien's displacement law is that the wavelength at which the intensity per unit wavelength of the radiation produced by a black body has a local maximum or peak, , is a function only of the temperature: =, where the constant b, known as Wien's displacement constant, is equal to + 2.897 771 955 × 10 −3 m K. [31]

  6. Wien's law - Wikipedia

    en.wikipedia.org/wiki/Wien's_law

    Wien's law or Wien law may refer to: . Wien approximation, an equation used to describe the short-wavelength (high frequency) spectrum of thermal radiation; Wien's displacement law, an equation that describes the relationship between the temperature of an object and the peak wavelength or frequency of the emitted light

  7. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    Deriving the Stefan–Boltzmann Law using Planck's law. The law can be derived by considering a small flat black body surface radiating out into a half-sphere. This derivation uses spherical coordinates , with θ as the zenith angle and φ as the azimuthal angle; and the small flat blackbody surface lies on the xy-plane, where θ = π / 2 .

  8. File:Wien's Displacement Law Variations Chart.svg - Wikipedia

    en.wikipedia.org/wiki/File:Wien's_Displacement...

    For different versions of the law, the proportionality constant differs—so, for a given temperature, there is no unique characteristic wavelength or frequency. The chart plots the peak of the Planck luminosity curve when it is plotted on a per wavelength basis ("peak wavelength"), on a per frequency basis ("peak frequency"), or on a per log ...

  9. Spectral index - Wikipedia

    en.wikipedia.org/wiki/Spectral_index

    The spectral index departs from this value at shorter wavelengths, for which the Rayleigh–Jeans law becomes an increasingly inaccurate approximation, tending towards zero as intensity reaches a peak at a frequency given by Wien's displacement law.