Search results
Results from the WOW.Com Content Network
In mathematics, a cube root of a number x is a number y that has the given number as its third power; that is =. The number of cube roots of a number depends on the number system that is considered. Every nonzero real number x has exactly one real cube root that is denoted x 3 {\textstyle {\sqrt[{3}]{x}}} and called the real cube root of x or ...
y = x 3 for values of 1 ≤ x ≤ 25.. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number n is denoted n 3, using a superscript 3, [a] for example 2 3 = 8.
4. Mean value: If x is a variable that takes its values in some sequence of numbers S, then ¯ may denote the mean of the elements of S. 5. Negation: Sometimes used to denote negation of the entire expression under the bar, particularly when dealing with Boolean algebra.
This is because raising the latter's coefficient –1 to the nth power for even n yields 1: that is, (–r 1) n = (–1) n × r 1 n = r 1 n. As with square roots, the formula above does not define a continuous function over the entire complex plane, but instead has a branch cut at points where θ / n is discontinuous.
Some others like T. L. Heath, who translated all of Archimedes's works, disagree, putting forward evidence that Archimedes really solved cubic equations using intersections of two conics, but also discussed the conditions where the roots are 0, 1 or 2. [10] Graph of the cubic function f(x) = 2x 3 − 3x 2 − 3x + 2 = (x + 1) (2x − 1) (x − 2)
Constant function: polynomial of degree zero, graph is a horizontal straight line; Linear function: First degree polynomial, graph is a straight line. Quadratic function: Second degree polynomial, graph is a parabola. Cubic function: Third degree polynomial. Quartic function: Fourth degree polynomial. Quintic function: Fifth degree polynomial.
The points P 1, P 2, and P 3 (in blue) are collinear and belong to the graph of x 3 + 3 / 2 x 2 − 5 / 2 x + 5 / 4 . The points T 1, T 2, and T 3 (in red) are the intersections of the (dotted) tangent lines to the graph at these points with the graph itself. They are collinear too.
The graph of the logarithm to base 2 crosses the x axis (horizontal axis) at 1 and passes through the points with coordinates (2, 1), (4, 2), and (8, 3). For example, log 2 (8) = 3, because 2 3 = 8. The graph gets arbitrarily close to the y axis, but does not meet or intersect it.