Search results
Results from the WOW.Com Content Network
Atmospheric optics is "the study of the optical characteristics of the atmosphere or products of atmospheric processes .... [including] temporal and spatial resolutions beyond those discernible with the naked eye". [1] Meteorological optics is "that part of atmospheric optics concerned with the study of patterns observable with the naked eye". [2]
Atmospheric refraction of the light from a star is zero in the zenith, less than 1′ (one arc-minute) at 45° apparent altitude, and still only 5.3′ at 10° altitude; it quickly increases as altitude decreases, reaching 9.9′ at 5° altitude, 18.4′ at 2° altitude, and 35.4′ at the horizon; [4] all values are for 10 °C and 1013.25 hPa ...
The input stokes parameters q and u are then with respect to North but in the altitude-azimuth frame. We can easily unwrap q assuming it is in the +altitude direction. From the basic definition we know that +Q is an angle of 0° and -Q is an angle of 90°. Therefore, Q is calculated from a sine function.
Atmospheric turbulence increases the diameter of the smallest spot by a factor approximately / (for long exposures [2]). As such, imaging from telescopes with apertures much smaller than r 0 {\displaystyle r_{0}} is less affected by atmospheric seeing than diffraction due to the telescope's small aperture.
A slightly more rigorous definition of a light ray follows from Fermat's principle, which states that the path taken between two points by a ray of light is the path that can be traversed in the least time. [1] Geometrical optics is often simplified by making the paraxial approximation, or "small angle approximation
Geometry of reflection and refraction of light rays. Geometrical optics, or ray optics, describes the propagation of light in terms of "rays" which travel in straight lines, and whose paths are governed by the laws of reflection and refraction at interfaces between different media. [35]
Mie theory is very important in meteorological optics, where diameter-to-wavelength ratios of the order of unity and larger are characteristic for many problems regarding haze and cloud scattering. A further application is in the characterization of particles by optical scattering measurements.
The optical atmospheric window is the optical portion of the electromagnetic spectrum that passes through the Earth's atmosphere, excluding its infrared part; [10] although, as mentioned before, the optical spectrum also includes the IR spectrum and thus the optical window could include the infrared window (8 – 14 μm), the latter is ...