Search results
Results from the WOW.Com Content Network
Methyltrichlorosilane undergoes hydrolysis, shown in idealized form here: [1] MeSiCl 3 + 3 H 2 O → MeSi(OH) 3 + 3 HCl. The silanol is unstable and will eventually condense to give a polymer network: MeSi(OH) 3 → MeSiO 1.5 + 1.5 H 2 O. Methyltrichlorosilane undergoes alcoholysis (reaction with alcohol) to give alkoxysilanes.
Methyltrichlorosilane can be used to induce branching and cross-linking in PDMS molecules, while chlorotrimethylsilane serves to end backbone chains, limiting molecular weight. Other acid-forming species, especially acetate, can replace chlorine in silicone synthesis with little difference in the chemistry of the finished polymer. These ...
Trichlorosilane is a reagent in the conversion of benzoic acids to toluene derivatives. In the first step of a two-pot reaction, the carboxylic acid is first converted to the trichlosilylbenzyl compound. In the second step, the benzylic silyl derivative is converted to the toluene derivative with base. [7]
Dimethyldichlorosilane (Me 2 SiCl 2) is of particular value (precursor to silicones), but trimethylsilyl chloride (Me 3 SiCl) and methyltrichlorosilane (MeSiCl 3) are also valuable. [5]: 371 The mechanism of the direct process is still not well understood, despite much research. Copper plays an important role.
The more useful products of this reaction are those for x = 1 (trimethylsilyl chloride), 2 (dimethyldichlorosilane), and 3 (methyltrichlorosilane). [1] TMS undergoes deprotonation upon treatment with butyllithium to give (H 3 C) 3 SiCH 2 Li. The latter, trimethylsilylmethyl lithium, is a relatively common alkylating agent.
Methyltrimethoxysilane is usually prepared from methyltrichlorosilane and methanol: CH 3 SiCl 3 + 3 CH 3 OH → CH 3 Si(OCH 3) 3 + 3 HCl. Alcoholysis of alkylchlorosilanes typically proceeds via an S N 2 mechanism. Inversion of the configuration is favored during nucleophilic attack when displacing good leaving groups, such as chloride. [3]
The mechanism of the direct synthesis is not known. However, the copper catalyst is essential for the reaction to proceed. In addition to dimethyldichlorosilane, products of this reaction include CH 3 SiCl 3, CH 3 SiHCl 2, and (CH 3) 3 SiCl, which are separated from each other by fractional distillation. The yields and boiling points of these ...
The reaction mechanism [7] undergoes three major steps, the first one being the protonation of the oxygen on the carbonyl in the β-diketone, which then undergoes a nucleophilic addition reaction with the aniline. An intramolecular proton transfer is followed by an E2 mechanism, which causes a molecule of water to leave.