Search results
Results from the WOW.Com Content Network
The higher-dimensional chain rule can be proved using a technique similar to the second proof given above. [ 7 ] Because the total derivative is a linear transformation, the functions appearing in the formula can be rewritten as matrices.
This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.
so that, by the chain rule, its differential is =. This summation is performed over all n×n elements of the matrix. To find ∂F/∂A ij consider that on the right hand side of Laplace's formula, the index i can be chosen at will. (In order to optimize calculations: Any other choice would eventually yield the same result, but it could be much ...
Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...
The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse operation. This mirrors the conventional way the related theorems are presented in modern basic ...
The data processing inequality is closely related to conditional mutual information and can be proven using the chain rule. Interaction information The ...
In propositional logic, hypothetical syllogism is the name of a valid rule of inference (often abbreviated HS and sometimes also called the chain argument, chain rule, or the principle of transitivity of implication). The rule may be stated:
Faà di Bruno's formula is an identity in mathematics generalizing the chain rule to higher derivatives. It is named after Francesco Faà di Bruno (1855, 1857), although he was not the first to state or prove the formula.