Search results
Results from the WOW.Com Content Network
Tumor cells in a hypoxic environment may be as much as 2 to 3 times more resistant to radiation damage than those in a normal oxygen environment. [5] Much research has been devoted to overcoming this problem including the use of high pressure oxygen tanks, blood substitutes that carry increased oxygen, hypoxic cell radiosensitizers such as ...
Not all cancer biomarkers have to be specific to types of cancer. Some biomarkers found in the circulatory system can be used to determine an abnormal growth of cells present in the body. All these types of biomarkers can be identified through diagnostic blood tests, which is one of the main reasons to get regularly health tested.
Among the somatic effects, secondary cancer is the most important. It develops because radiation causes DNA mutations directly and indirectly. Direct effects are those caused by ionizing particles and rays themselves, while the indirect effects are those that are caused by free radicals, generated especially in water radiolysis and
Tumor markers can be molecules that are produced in higher amounts by cancer cells than normal cells, but can also be produced by other cells from a reaction with the cancer. [2] The markers can't be used to give patients a diagnosis but can be compared with the result of other tests like biopsy or imaging. [2]
Radiation hormesis is the conjecture that a low level of ionizing radiation (i.e., near the level of Earth's natural background radiation) helps "immunize" cells against DNA damage from other causes (such as free radicals or larger doses of ionizing radiation), and decreases the risk of cancer. The theory proposes that such low levels activate ...
In medicine, a biomarker is a measurable indicator of the severity or presence of some disease state. It may be defined as a "cellular, biochemical or molecular alteration in cells, tissues or fluids that can be measured and evaluated to indicate normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention."
Radiation exposure through ionizing radiation (IR) affects a variety of processes inside of an exposed cell. IR can cause changes in gene expression, disruption of cell cycle arrest, and apoptotic cell death. The extent of how radiation effects cells depends on the type of cell and the dosage of the radiation. Some irradiated cancer cells have ...
Tissue differentiation antigens are those that are specific to a certain type of tissue. Mutant protein antigens are likely to be much more specific to cancer cells because normal cells shouldn't contain these proteins. Normal cells will display the normal protein antigen on their MHC molecules, whereas cancer cells will display the mutant version.