Search results
Results from the WOW.Com Content Network
Avalanche breakdown (or the avalanche effect) is a phenomenon that can occur in both insulating and semiconducting materials. It is a form of electric current multiplication that can allow very large currents within materials which are otherwise good insulators. It is a type of electron avalanche.
In electronics, the Zener effect (employed most notably in the appropriately named Zener diode) is a type of electrical breakdown, discovered by Clarence Melvin Zener. It occurs in a reverse biased p-n diode when the electric field enables tunneling of electrons from the valence to the conduction band of a semiconductor , leading to numerous ...
In electronics, an avalanche diode is a diode (made from silicon or other semiconductor) that is designed to experience avalanche breakdown at a specified reverse bias voltage. The junction of an avalanche diode is designed to prevent current concentration and resulting hot spots, so that the diode is undamaged by the breakdown.
A subsurface Zener diode, also called a buried Zener, is a device similar to the surface Zener, but the doping and design is such that the avalanche region is located deeper in the structure, typically several micrometers below the oxide. Hot carriers then lose energy by collisions with the semiconductor lattice before reaching the oxide layer ...
A Zener diode contains a heavily doped p–n junction allowing electrons to tunnel from the valence band of the p-type material to the conduction band of the n-type material, such that the reverse voltage is "clamped" to a known value (called the Zener voltage), and avalanche does not occur. Both devices, however, do have a limit to the maximum ...
The first paper dealing with avalanche transistors was Ebers & Miller (1955).The paper describes how to use alloy-junction transistors in the avalanche breakdown region in order to overcome speed and breakdown voltage limitations which affected the first models of such kind of transistor when used in earlier computer digital circuits.
This phenomenon is called avalanche breakdown. At breakdown, the n– region is punched through and forms the avalanche region of the diode. The high resistivity region is the drift zone through which the avalanche generated electrons move toward the anode. Consider a dc bias V B, just short of that required to cause breakdown, applied to the ...
In an avalanche, one carrier collides with other atoms and knocks free new carriers. The result is that for each carrier that starts across a barrier, several carriers synchronously arrive. The result is a wide-bandwidth high-power source. Conventional diodes can be used in breakdown. The avalanche breakdown also has multistate noise.