Search results
Results from the WOW.Com Content Network
Bistatic radar is a radar system comprising a transmitter and receiver that are separated by a distance comparable to the expected target distance. Conversely, a conventional radar in which the transmitter and receiver are co-located is called a monostatic radar . [ 1 ]
Using radar measurements, the French Air and Space Force is able to spot satellites orbiting the Earth and determine their orbit. The GRAVES system took 15 years to develop, and became operational in November, 2005. [2] GRAVES is also a contributing system to the European Space Agency's Space Situational Awareness Programme (SSA). [3]
A multistatic radar system. A multistatic radar system contains multiple spatially diverse monostatic radar or bistatic radar components with a shared area of coverage. An important distinction of systems based on these individual radar geometries is the added requirement for some level of data fusion to take place between component parts.
Radar engineering is the design of technical aspects pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment.
GNSS reflectometry is a bi-static radar, where transmitter and receiver are separated by a significant distance. Since in GNSS reflectometry one receiver simultaneously can track multiple transmitters (i.e. GNSS satellites), the system also has the nature of multi-static radar.
Space-time adaptive processing (STAP) is a signal processing technique most commonly used in radar systems. It involves adaptive array processing algorithms to aid in target detection. Radar signal processing benefits from STAP in areas where interference is a problem (i.e. ground clutter, jamming, etc.). Through careful application of STAP, it ...
Bistatic radars use separated transmitters and receivers, providing indication of objects moving between the two antennas. Pages in category "Bistatic radars" The following 9 pages are in this category, out of 9 total.
The "Bistatic Radar Experiment", improvised during the mission, was designed to look for evidence of lunar water at the Moon's poles. Radio signals from the Clementine probe's transmitter were directed towards the Moon's north and south polar regions and their reflections detected by Deep Space Network receivers on Earth.