Search results
Results from the WOW.Com Content Network
Unlike the other two fictitious forces, the centrifugal force always points radially outward from the axis of rotation of the rotating frame, with magnitude , where is the component of the position vector perpendicular to , and unlike the Coriolis force in particular, it is independent of the motion of the particle in the rotating frame.
Force plates are platforms, usually part of a trackway, that can be used to measure the magnitude and direction of forces of an animal's step. When used with kinematics and a sufficiently detailed model of anatomy, inverse dynamics solutions can determine the forces not just at the contact with the ground, but at each joint in the limb.
In epidemiology, force of infection (denoted ) is the rate at which susceptible individuals acquire an infectious disease. [1] Because it takes account of susceptibility it can be used to compare the rate of transmission between different groups of the population for the same infectious disease, or even between different infectious diseases.
It is the perpendicular force exerted on the contents of the rotor as a result of the rotation, always relative to the gravity of the Earth, which measures the strength of rotors of different types and sizes. For instance, the RCF of 1000 x g means that the centrifugal force is 1000 times stronger than the Earth's gravitational force.
In computational biology, N50 and L50 are statistics of a set of contig or scaffold lengths. The N50 is similar to a mean or median of lengths, but has greater weight given to the longer contigs. It is used widely in genome assembly , especially in reference to contig lengths within a draft assembly.
A diagram of Central forces. In classical mechanics, a central force on an object is a force that is directed towards or away from a point called center of force. [a] [1]: 93 = = | | ^ where is the force, F is a vector valued force function, F is a scalar valued force function, r is the position vector, ||r|| is its length, and ^ = / ‖ ‖ is the corresponding unit vector.
Originally, the coupling constant related the force acting between two static bodies to the "charges" of the bodies (i.e. the electric charge for electrostatic and the mass for Newtonian gravity) divided by the distance squared, , between the bodies; thus: in = / for Newtonian gravity and in = / for electrostatic.
They are obtained from the applied forces F i, i = 1, …, n, acting on a system that has its configuration defined in terms of generalized coordinates. In the formulation of virtual work , each generalized force is the coefficient of the variation of a generalized coordinate.