Ad
related to: sec tan integral rule calculator calculus 1 5 4 20
Search results
Results from the WOW.Com Content Network
Twice the area of the purple triangle is the stereographic projection s = tan 1 / 2 ϕ = tanh 1 / 2 ψ. The blue point has coordinates (cosh ψ, sinh ψ). The red point has coordinates (cos ϕ, sin ϕ). The purple point has coordinates (0, s). The integral of the hyperbolic secant function defines the Gudermannian function:
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals. For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [1]
For a definite integral, the bounds change once the substitution is performed and are determined using the equation = , with values in the range < <. Alternatively, apply the boundary terms directly to the formula for the antiderivative.
An even larger, multivolume table is the Integrals and Series by Prudnikov, Brychkov, and Marichev (with volumes 1–3 listing integrals and series of elementary and special functions, volume 4–5 are tables of Laplace transforms).
That is, ω acts like an even function. This is the same as the symmetry of the cosine, which is an even function, so the mnemonic tells us to use the substitution = (rule 1). Under this substitution, the integral becomes . The integrand involving transcendental functions has been reduced to one involving a rational function (a constant).
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.
To compute the integral, we set n to its value and use the reduction formula to express it in terms of the (n – 1) or (n – 2) integral. The lower index integral can be used to calculate the higher index ones; the process is continued repeatedly until we reach a point where the function to be integrated can be computed, usually when its index is 0 or 1.
Ad
related to: sec tan integral rule calculator calculus 1 5 4 20