Search results
Results from the WOW.Com Content Network
Lithium nitrate is an inorganic compound with the formula LiNO 3. It is the lithium salt of nitric acid (an alkali metal nitrate ). The salt is deliquescent , absorbing water to form the hydrated form, lithium nitrate trihydrate.
Promethium is not an easy image to find, however, out of all the elements without a picture, it is one of the two most likely to have a picture discovered. The only pictures floating around the place are of promethium chloride and promethium oxide, but not the metal itself. This is likely because the metal is not used for anything, it's hard to ...
The nitrate ion. Alkali metal nitrates are chemical compounds consisting of an alkali metal (lithium, sodium, potassium, rubidium and caesium) and the nitrate ion. Only two are of major commercial value, the sodium and potassium salts. [1] They are white, water-soluble salts with melting points ranging from 255 °C (LiNO 3) to 414 °C (CsNO
Ammonium nitrate decomposition (as monopropellant) 1.4: 2.5: Thermal Energy Capacity of Molten Salt: 1 [citation needed] 98% [18] Molecular spring approximate [citation needed] 1: battery, Lithium–Manganese [19] [20] 0.83-1.01: 1.98-2.09: battery, Sodium–Sulfur: 0.72 [21] 1.23 [citation needed] 85% [22] battery, Lithium-ion [23] [24] 0.46-0 ...
lithium nitrate: 7790–69–4 LiN 3: lithium azide: 19597–69–4 LiNbO 3: lithium niobate: 12031–63–9 LiOH: lithium hydroxide: 1310–65–2 LiO 2: lithium superoxide: 12136–56–0 LiPF 6: lithium hexafluorophosphate: 21324–40–3 LiPH 2 O 4: lithium dihydrogenphosphate: 13453–80–0 LiReO 4: lithium perrhenate: 13768–48–4 ...
At 20 mg lithium per kg of Earth's crust, [53] lithium is the 31st most abundant element. [54] According to the Handbook of Lithium and Natural Calcium, "Lithium is a comparatively rare element, although it is found in many rocks and some brines, but always in very low concentrations. There are a fairly large number of both lithium mineral and ...
The principal sources of rare-earth elements are the minerals bastnäsite (RCO 3 F, where R is a mixture of rare-earth elements), monazite (XPO 4, where X is a mixture of rare-earth elements and sometimes thorium), and loparite ((Ce,Na,Ca)(Ti,Nb)O 3), and the lateritic ion-adsorption clays.
Lithium nitride is prepared by direct reaction of elemental lithium with nitrogen gas: [2] 6 Li + N 2 → 2 Li 3 N. Instead of burning lithium metal in an atmosphere of nitrogen, a solution of lithium in liquid sodium metal can be treated with N 2. Lithium nitride must be protected from moisture as it reacts violently with water to produce ammonia: