Search results
Results from the WOW.Com Content Network
In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts.
One often uses a prior which comes from a parametric family of probability distributions – this is done partly for explicitness (so one can write down a distribution, and choose the form by varying the hyperparameter, rather than trying to produce an arbitrary function), and partly so that one can vary the hyperparameter, particularly in the method of conjugate priors, or for sensitivity ...
In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).
Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [8]Bayesian optimization is typically used on problems of the form (), where is a set of points, , which rely upon less (or equal to) than 20 dimensions (,), and whose membership can easily be evaluated.
To choose between models, two or more subsets of a data sample are used, similar to the train-validation-test split. GMDH combined ideas from: [8] black box modeling, successive genetic selection of pairwise features, [9] the Gabor's principle of "freedom of decisions choice", [10] and the Beer's principle of external additions. [11]
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis, this may be the selection of a statistical model from a set of candidate models, given data.
Empirical Bayes methods can be seen as an approximation to a fully Bayesian treatment of a hierarchical Bayes model.. In, for example, a two-stage hierarchical Bayes model, observed data = {,, …,} are assumed to be generated from an unobserved set of parameters = {,, …,} according to a probability distribution ().