Search results
Results from the WOW.Com Content Network
v. t. e. In chemistry, an acid dissociation constant (also known as acidity constant, or acid-ionization constant; denoted ) is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction. known as dissociation in the context of acid–base reactions. The chemical species HA is an ...
The Feynman–Kac formula says that this expectation is equivalent to the integral of a solution to a diffusion equation. Specifically, under the conditions that , where w(x, 0) = δ(x) and. The Feynman–Kac formula can also be interpreted as a method for evaluating functional integrals of a certain form. If where the integral is taken over ...
The Henderson–Hasselbalch equation relates the pH of a solution containing a mixture of the two components to the acid dissociation constant, Ka of the acid, and the concentrations of the species in solution. [2] Simulated titration of an acidified solution of a weak acid (pKa = 4.7) with alkali. To derive the equation a number of simplifying ...
Dissociation constant. In chemistry, biochemistry, and pharmacology, a dissociation constant (KD) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its ...
Theoretical chemistry requires quantities from core physics, such as time, volume, temperature, and pressure.But the highly quantitative nature of physical chemistry, in a more specialized way than core physics, uses molar amounts of substance rather than simply counting numbers; this leads to the specialized definitions in this article.
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
m = mass of each molecule (all molecules are identical in kinetic theory), γ (p) = Lorentz factor as function of momentum (see below) Ratio of thermal to rest mass-energy of each molecule: θ = k B T / m c 2 {\displaystyle \theta =k_ {\text {B}}T/mc^ {2}} K2 is the modified Bessel function of the second kind.
Equilibrium chemistry is concerned with systems in chemical equilibrium. The unifying principle is that the free energy of a system at equilibrium is the minimum possible, so that the slope of the free energy with respect to the reaction coordinate is zero. [1][2] This principle, applied to mixtures at equilibrium provides a definition of an ...