Search results
Results from the WOW.Com Content Network
In mathematics, a plane is a two-dimensional space or flat surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space, the definite article is used, so the Euclidean plane refers to the ...
A plane segment or planar region (or simply "plane", in lay use) is a planar surface region; it is analogous to a line segment. A bivector is an oriented plane segment, analogous to directed line segments. [a] A face is a plane segment bounding a solid object. [1] A slab is a region bounded by two parallel planes.
Two-dimensional spaces can also be curved, for example the sphere and hyperbolic plane, sufficiently small portions of which appear like the flat plane, but on which straight lines which are locally parallel do not stay equidistant from each-other but eventually converge or diverge, respectively.
In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point . It is an affine space , which includes in particular the concept of parallel lines .
The order of a finite projective plane is n = k – 1, that is, one less than the number of points on a line. All known projective planes have orders that are prime powers. A projective plane of order n is an ((n 2 + n + 1) n + 1) configuration. The smallest projective plane has order two and is known as the Fano plane.
In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...
The plane (a set of points) can be equipped with different metrics. In the taxicab metric the red, yellow and blue paths have the same length (12), and are all shortest paths. In the Euclidean metric , the green path has length 6 2 ≈ 8.49 {\displaystyle 6{\sqrt {2}}\approx 8.49} , and is the unique shortest path, whereas the red, yellow, and ...
Euclidean space was introduced by ancient Greeks as an abstraction of our physical space. Their great innovation, appearing in Euclid's Elements was to build and prove all geometry by starting from a few very basic properties, which are abstracted from the physical world, and cannot be mathematically proved because of the lack of more basic tools.