Search results
Results from the WOW.Com Content Network
In the particular case p = 1, this shows that L 1 is a Banach algebra under the convolution (and equality of the two sides holds if f and g are non-negative almost everywhere). More generally, Young's inequality implies that the convolution is a continuous bilinear map between suitable L p spaces.
This is a pictorial representation of a code concatenation, and, in particular, the Reed–Solomon code with n=q=4 and k=2 is used as the outer code and the Hadamard code with n=q and k=log q is used as the inner code. Overall, the concatenated code is a [, ]-code.
Circular convolution, also known as cyclic convolution, is a special case of periodic convolution, which is the convolution of two periodic functions that have the same period. Periodic convolution arises, for example, in the context of the discrete-time Fourier transform (DTFT). In particular, the DTFT of the product of two discrete sequences ...
Algebraic signal processing (ASP) is an emerging area of theoretical signal processing (SP). In the algebraic theory of signal processing, a set of filters is treated as an (abstract) algebra, a set of signals is treated as a module or vector space, and convolution is treated as an algebra representation. The advantage of algebraic signal ...
Convolutional code with any code rate can be designed based on polynomial selection; [15] however, in practice, a puncturing procedure is often used to achieve the required code rate. Puncturing is a technique used to make a m/n rate code from a "basic" low-rate (e.g., 1/n) code. It is achieved by deleting of some bits in the encoder output.
A digital signal is an abstraction that is discrete in time and amplitude. The signal's value only exists at regular time intervals, since only the values of the corresponding physical signal at those sampled moments are significant for further digital processing. The digital signal is a sequence of codes drawn from a finite set of values. [10]
Fig 1: A sequence of four plots depicts one cycle of the overlap–save convolution algorithm. The 1st plot is a long sequence of data to be processed with a lowpass FIR filter. The 2nd plot is one segment of the data to be processed in piecewise fashion.
In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).