enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generative adversarial network - Wikipedia

    en.wikipedia.org/wiki/Generative_adversarial_network

    A generative adversarial network (GAN) is a class of machine learning frameworks and a prominent framework for approaching generative artificial intelligence.The concept was initially developed by Ian Goodfellow and his colleagues in June 2014. [1]

  3. Wasserstein GAN - Wikipedia

    en.wikipedia.org/wiki/Wasserstein_GAN

    The original GAN method is based on the GAN game, a zero-sum game with 2 players: generator and discriminator. The game is defined over a probability space (,,), The generator's strategy set is the set of all probability measures on (,), and the discriminator's strategy set is the set of measurable functions : [,].

  4. StyleGAN - Wikipedia

    en.wikipedia.org/wiki/StyleGAN

    A direct predecessor of the StyleGAN series is the Progressive GAN, published in 2017. [9]In December 2018, Nvidia researchers distributed a preprint with accompanying software introducing StyleGAN, a GAN for producing an unlimited number of (often convincing) portraits of fake human faces.

  5. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    For example, TensorFlow Recommenders and TensorFlow Graphics are libraries for their respective functionalities in recommendation systems and graphics, TensorFlow Federated provides a framework for decentralized data, and TensorFlow Cloud allows users to directly interact with Google Cloud to integrate their local code to Google Cloud. [68]

  6. Fréchet inception distance - Wikipedia

    en.wikipedia.org/wiki/Fréchet_inception_distance

    The Fréchet inception distance (FID) is a metric used to assess the quality of images created by a generative model, like a generative adversarial network (GAN) [1] or a diffusion model. [2] [3] The FID compares the distribution of generated images with the distribution of a set of real images (a "ground truth" set).

  7. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    The original T5 codebase was implemented in TensorFlow with MeshTF. [2] UL2 20B (2022): a model with the same architecture as the T5 series, but scaled up to 20B, and trained with "mixture of denoisers" objective on the C4. [23] It was trained on a TPU cluster by accident, when a training run was left running accidentally for a month. [24]

  8. Echo state network - Wikipedia

    en.wikipedia.org/wiki/Echo_state_network

    The Echo State Network (ESN) [4] belongs to the Recurrent Neural Network (RNN) family and provide their architecture and supervised learning principle. Unlike Feedforward Neural Networks, Recurrent Neural Networks are dynamic systems and not functions.

  9. Latent diffusion model - Wikipedia

    en.wikipedia.org/wiki/Latent_Diffusion_Model

    The paper was accompanied by a software package written in TensorFlow release on GitHub. [10] It was reimplemented in PyTorch by lucidrains. [11] [12] On December 20, 2021, the LDM paper was published on arXiv, [13] and both Stable Diffusion [14] and LDM [15] repositories were published on GitHub. However, they remained roughly the same.