Search results
Results from the WOW.Com Content Network
This relation is known as the drag coefficient equation: = (,,) drag coefficient equation. The aerodynamic efficiency has a maximum value, E max, respect to C L where the tangent line from the coordinate origin touches the drag coefficient equation plot.
Propulsive, aerodynamic, and gravitational force vectors acting on a space vehicle during launch. The forces acting on space vehicles are of three types: propulsive force (usually provided by the vehicle's engine thrust); gravitational force exerted by the Earth and other celestial bodies; and aerodynamic lift and drag (when flying in the atmosphere of the Earth or another body, such as Mars ...
Internal aerodynamics is the study of flow through passages in solid objects. For instance, internal aerodynamics encompasses the study of the airflow through a jet engine or through an air conditioning pipe. Aerodynamic problems can also be classified according to whether the flow speed is below, near or above the speed of sound.
Expressing the aerodynamic force in the wind frame, it has a drag component with magnitude D opposite the velocity vector in the −x w direction, a side force component with magnitude C in the +y w direction, and a lift component with magnitude L in the −z w direction. In general, the thrust can have components along each body frame axis.
The science of aerodynamics deals with the motion of air and the way that it interacts with objects in motion, such as an aircraft. The study of aerodynamics falls broadly into three areas: Incompressible flow occurs where the air simply moves to avoid objects, typically at subsonic speeds below that of sound (Mach 1).
The aerodynamic center is shown, labeled "c.a." In aerodynamics , the torques or moments acting on an airfoil moving through a fluid can be accounted for by the net lift and net drag applied at some point on the airfoil, and a separate net pitching moment about that point whose magnitude varies with the choice of where the lift is chosen to be ...
For a tailless aircraft, the neutral point coincides with the aerodynamic center, and so for such aircraft to have longitudinal static stability, the center of gravity must lie ahead of the aerodynamic center. [13] For missiles with symmetric airfoils, the neutral point and the center of pressure are coincident and the term neutral point is not ...
However, this lift (deflection) process inevitably causes a retarding force called drag. Because lift and drag are both aerodynamic forces, the ratio of lift to drag is an indication of the aerodynamic efficiency of the airplane. The lift to drag ratio is the L/D ratio, pronounced "L over D ratio."