Search results
Results from the WOW.Com Content Network
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
The method for general multiplication is a method to achieve multiplications with low space complexity, i.e. as few temporary results as possible to be kept in memory. . This is achieved by noting that the final digit is completely determined by multiplying the last digit of the multiplic
Given real numbers x and y, integers m and n and the set of integers, floor and ceiling may be defined by the equations ⌊ ⌋ = {}, ⌈ ⌉ = {}. Since there is exactly one integer in a half-open interval of length one, for any real number x, there are unique integers m and n satisfying the equation
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Even using a more effective method will take a long time: square 13789, take the remainder when divided by 2345, multiply the result by 13789, and so on. Applying above exp-by-squaring algorithm, with "*" interpreted as x * y = xy mod 2345 (that is, a multiplication followed by a division with remainder) leads to only 27 multiplications and ...