Search results
Results from the WOW.Com Content Network
An algebraic equation is an equation involving polynomials, for which algebraic expressions may be solutions. If you restrict your set of constants to be numbers, any algebraic expression can be called an arithmetic expression. However, algebraic expressions can be used on more abstract objects such as in Abstract algebra.
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.
Algebraic notation describes the rules and conventions for writing mathematical expressions, as well as the terminology used for talking about parts of expressions. For example, the expression 3 x 2 − 2 x y + c {\displaystyle 3x^{2}-2xy+c} has the following components:
The FOIL method is a special case of a more general method for multiplying algebraic expressions using the distributive law. The word FOIL was originally intended solely as a mnemonic for high-school students learning algebra. The term appears in William Betz's 1929 text Algebra for Today, where he states: [2]
In mathematics, a polynomial is a mathematical expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms.
An algebraic expression is an expression built up from algebraic constants, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by a rational number). [41] For example, 3x 2 − 2xy + c is an algebraic expression.
2. In geometry and linear algebra, denotes the cross product. 3. In set theory and category theory, denotes the Cartesian product and the direct product. See also × in § Set theory. · 1. Denotes multiplication and is read as times; for example, 3 ⋅ 2. 2. In geometry and linear algebra, denotes the dot product. 3.
An algebraic equation is univariate if it involves only one variable. On the other hand, a polynomial equation may involve several variables, in which case it is called multivariate (multiple variables, x, y, z, etc.). For example, + = is a univariate algebraic (polynomial) equation with integer coefficients and