enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Symmetric_polynomial

    The following polynomials in two variables X 1 and X 2 are symmetric: + + + + (+) as is the following polynomial in three variables X 1, X 2, X 3: . There are many ways to make specific symmetric polynomials in any number of variables (see the various types below).

  3. Symmetric function - Wikipedia

    en.wikipedia.org/wiki/Symmetric_function

    Aside from polynomial functions, tensors that act as functions of several vectors can be symmetric, and in fact the space of symmetric -tensors on a vector space is isomorphic to the space of homogeneous polynomials of degree on . Symmetric functions should not be confused with even and odd functions, which have a different sort of symmetry.

  4. Power sum symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Power_sum_symmetric_polynomial

    The following lists the power sum symmetric polynomials of positive degrees up to n for the first three positive values of . In every case, = is one of the polynomials. The list goes up to degree n because the power sum symmetric polynomials of degrees 1 to n are basic in the sense of the theorem stated below.

  5. Elementary symmetric polynomial - Wikipedia

    en.wikipedia.org/.../Elementary_symmetric_polynomial

    But the terms of P which contain only the variables X 1, ..., X n − 1 are precisely the terms that survive the operation of setting X n to 0, so their sum equals P(X 1, ..., X n − 1, 0), which is a symmetric polynomial in the variables X 1, ..., X n − 1 that we shall denote by P̃(X 1, ..., X n − 1). By the inductive hypothesis, this ...

  6. Complete homogeneous symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Complete_homogeneous...

    Multiplying this by the generating function for the complete homogeneous symmetric polynomials, one obtains the constant series 1 (equivalently, plethystic exponentials satisfy the usual properties of an exponential), and the relation between the elementary and complete homogeneous polynomials follows from comparing coefficients of t m.

  7. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    The Newton identities also permit expressing the elementary symmetric polynomials in terms of the power sum symmetric polynomials, showing that any symmetric polynomial can also be expressed in the power sums. In fact the first n power sums also form an algebraic basis for the space of symmetric polynomials.

  8. Cyclic vector - Wikipedia

    en.wikipedia.org/wiki/Cyclic_vector

    In the mathematics of operator theory, an operator A on an (infinite dimensional) Banach space or Hilbert space H has a cyclic vector f if the vectors f, Af, A 2 f,... span H. Equivalently, f is a cyclic vector for A in case the set of all vectors of the form p(A)f, where p varies over all polynomials, is dense in H. [1] [2]

  9. Symmetric group - Wikipedia

    en.wikipedia.org/wiki/Symmetric_group

    Beyond the group A 4, S 4 has a Klein four-group V as a proper normal subgroup, namely the even transpositions {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, with quotient S 3. In Galois theory, this map corresponds to the resolving cubic to a quartic polynomial, which allows the quartic to be solved by radicals, as established by Lodovico Ferrari.