Search results
Results from the WOW.Com Content Network
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
The attenuator sequence, which is located between the mRNA leader sequence (5' UTR) and trp operon gene sequence, contains four domains, where domain 3 can pair with domain 2 or domain 4. The attenuator sequence at domain 1 contains instruction for peptide synthesis that requires tryptophans. A high level of tryptophan will permit ribosomes to ...
An active enhancer regulatory sequence of DNA is enabled to interact with the promoter DNA regulatory sequence of its target gene by formation of a chromosome loop. This can initiate messenger RNA (mRNA) synthesis by RNA polymerase II (RNAP II) bound to the promoter at the transcription start site of the gene.
In genetics, a transcription terminator is a section of nucleic acid sequence that marks the end of a gene or operon in genomic DNA during transcription.This sequence mediates transcriptional termination by providing signals in the newly synthesized transcript RNA that trigger processes which release the transcript RNA from the transcriptional complex.
Artificial gene synthesis, or simply gene synthesis, refers to a group of methods that are used in synthetic biology to construct and assemble genes from nucleotides de novo. Unlike DNA synthesis in living cells, artificial gene synthesis does not require template DNA, allowing virtually any DNA sequence to be synthesized in the laboratory.
Computational design and evaluation of DNA circuits to achieve optimal performance. Recent developments in artificial gene synthesis and the corresponding increase in competition within the industry have led to a significant drop in price and wait time of gene synthesis and helped improve methods used in circuit design. [21]
There are 52 genes that encode the ribosomal proteins, and they can be found in 20 operons within prokaryotic DNA. Regulation of ribosome synthesis hinges on the regulation of the rRNA itself. First, a reduction in aminoacyl-tRNA will cause the prokaryotic cell to respond by lowering transcription and translation. This occurs through a series ...
DnaA is a protein which recognises the origin of replication, promotes a local unwinding of an AT rich DNA region and finally guides the helicase DnaB to its entry site. DnaA is the replication initiation factor which causes DNA replication if present in sufficient concentration. [5] Regulation of the Gua Operon