enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Doping (semiconductor) - Wikipedia

    en.wikipedia.org/wiki/Doping_(semiconductor)

    Doping of a pure silicon array. Silicon based intrinsic semiconductor becomes extrinsic when impurities such as boron and antimony are introduced.. In semiconductor production, doping is the intentional introduction of impurities into an intrinsic (undoped) semiconductor for the purpose of modulating its electrical, optical and structural properties.

  3. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    For example, doping pure silicon with a small amount of phosphorus will increase the carrier density of electrons, n. Then, since n > p, the doped silicon will be a n-type extrinsic semiconductor. Doping pure silicon with a small amount of boron will increase the carrier density of holes, so then p > n, and it will be a p-type extrinsic ...

  4. Donor (semiconductors) - Wikipedia

    en.wikipedia.org/wiki/Donor_(semiconductors)

    In semiconductor physics, a donor is a dopant atom that, when added to a semiconductor, can form a n-type region. Phosphorus atom acting as a donor in the simplified 2D silicon lattice. For example, when silicon (Si), having four valence electrons , is to be doped as a n-type semiconductor , elements from group V like phosphorus (P) or arsenic ...

  5. Acceptor (semiconductors) - Wikipedia

    en.wikipedia.org/wiki/Acceptor_(semiconductors)

    In semiconductor physics, an acceptor is a dopant atom that when substituted into a semiconductor lattice forms a p-type region. Boron atom acting as an acceptor in the simplified 2D silicon lattice. When silicon (Si), having four valence electrons , is doped with elements from group III of the periodic table , such as boron (B) and aluminium ...

  6. Intrinsic semiconductor - Wikipedia

    en.wikipedia.org/wiki/Intrinsic_semiconductor

    In intrinsic semiconductors the number of excited electrons and the number of holes are equal: n = p. This may be the case even after doping the semiconductor, though only if it is doped with both donors and acceptors equally. In this case, n = p still holds, and the semiconductor remains intrinsic, though doped.

  7. Degenerate semiconductor - Wikipedia

    en.wikipedia.org/wiki/Degenerate_semiconductor

    A degenerate semiconductor is a semiconductor with such a high level of doping that the material starts to act more like a metal than a semiconductor. Unlike non-degenerate semiconductors, these kinds of semiconductor do not obey the law of mass action, which relates intrinsic carrier concentration with temperature and bandgap.

  8. Dopant - Wikipedia

    en.wikipedia.org/wiki/Dopant

    The addition of a dopant to a semiconductor, known as doping, has the effect of shifting the Fermi levels within the material. [ citation needed ] This results in a material with predominantly negative ( n-type ) or positive ( p-type ) charge carriers depending on the dopant variety.

  9. Monocrystalline silicon - Wikipedia

    en.wikipedia.org/wiki/Monocrystalline_silicon

    Monocrystalline silicon, often referred to as single-crystal silicon or simply mono-Si, is a critical material widely used in modern electronics and photovoltaics. As the foundation for silicon-based discrete components and integrated circuits , it plays a vital role in virtually all modern electronic equipment, from computers to smartphones.