enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constraint satisfaction problem - Wikipedia

    en.wikipedia.org/wiki/Constraint_satisfaction...

    The existence of a solution to a CSP can be viewed as a decision problem. This can be decided by finding a solution, or failing to find a solution after exhaustive search (stochastic algorithms typically never reach an exhaustive conclusion, while directed searches often do, on sufficiently small problems). In some cases the CSP might be known ...

  3. Common spatial pattern - Wikipedia

    en.wikipedia.org/wiki/Common_spatial_pattern

    Two sets of overlapping data used to illustrate how CSP can separate the data. Two sets of data after rotation by CSP to maximize the ratio of the variances along the two axes. Common spatial pattern ( CSP ) is a mathematical procedure used in signal processing for separating a multivariate signal into additive subcomponents which have maximum ...

  4. AC-3 algorithm - Wikipedia

    en.wikipedia.org/wiki/AC-3_algorithm

    The earlier AC algorithms are often considered too inefficient, and many of the later ones are difficult to implement, and so AC-3 is the one most often taught and used in very simple constraint solvers. The AC-3 algorithm is not to be confused with the similarly named A3C algorithm in machine learning. [1]

  5. Constraint satisfaction - Wikipedia

    en.wikipedia.org/wiki/Constraint_satisfaction

    As an example, the clause A(X):-X>0,B(X) is a clause containing the constraint X>0 in the body. Constraints can also be present in the goal. The constraints in the goal and in the clauses used to prove the goal are accumulated into a set called constraint store. This set contains the constraints the interpreter has assumed satisfiable in order ...

  6. Min-conflicts algorithm - Wikipedia

    en.wikipedia.org/wiki/Min-conflicts_algorithm

    algorithm MIN-CONFLICTS is input: console.csp, A constraint satisfaction problem. max_steps, The number of steps allowed before giving up. current_state, An initial assignment of values for the variables in the csp. output: A solution set of values for the variable or failure.

  7. Local search (constraint satisfaction) - Wikipedia

    en.wikipedia.org/wiki/Local_search_(constraint...

    The main problem of these algorithms is the possible presence of plateaus, which are regions of the space of assignments where no local move decreases cost. The second class of local search algorithm have been invented to solve this problem. They escape these plateaus by doing random moves, and are called randomized local search algorithms.

  8. Decomposition method (constraint satisfaction) - Wikipedia

    en.wikipedia.org/wiki/Decomposition_method...

    An example: a binary constraint satisfaction problem (join-tree clustering can also be applied to non-binary constraints.) This graph is not chordal (x3x4x5x6 form a cycle of four nodes having no chord). The graph is made chordal. The algorithm analyzes the nodes from x6 to x1.

  9. Multiplicative weight update method - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_Weight...

    In machine learning, Littlestone and Warmuth generalized the winnow algorithm to the weighted majority algorithm. [11] Later, Freund and Schapire generalized it in the form of hedge algorithm. [12] AdaBoost Algorithm formulated by Yoav Freund and Robert Schapire also employed the Multiplicative Weight Update Method. [1]