Search results
Results from the WOW.Com Content Network
Antimatter may exist in relatively large amounts in far-away galaxies due to cosmic inflation in the primordial time of the universe. Antimatter galaxies, if they exist, are expected to have the same chemistry and absorption and emission spectra as normal-matter galaxies, and their astronomical objects would be observationally identical, making ...
There is no evidence of primordial antimatter. In the universe about 1 in 10,000 protons are antiprotons, consistent with ongoing production due to cosmic rays. Possible domains of antimatter in other parts of the universe is inconsistent with the lack of measurable of gamma radiation background. [5]: 36
The existence of a traversable nonorientable wormhole would seem to allow the conversion of matter to antimatter, and vice versa. A universe that includes one of these "non-orientable" connections does not allow a global definition of whether a particle is "really" matter or antimatter, and this sort of universe, with no global definition of ...
In physical cosmology, the Big Rip is a hypothetical cosmological model concerning the ultimate fate of the universe, in which the matter of the universe, from stars and galaxies to atoms and subatomic particles, and even spacetime itself, is progressively torn apart by the expansion of the universe at a certain time in the future, until distances between particles will infinitely increase.
The implication of CPT symmetry is that a "mirror-image" of our universe — with all objects having their positions reflected through an arbitrary point (corresponding to a parity inversion), all momenta reversed (corresponding to a time inversion) and with all matter replaced by antimatter (corresponding to a charge inversion) — would ...
Some large black holes in the universe are predicted to continue to grow up to perhaps 10 14 M ☉ during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10 106 years. [17] After that time, the universe enters the so-called Dark Era and is expected to consist chiefly of a dilute gas of photons and ...
The universe will become extremely dark after the last stars burn out. Even so, there can still be occasional light in the universe. One of the ways the universe can be illuminated is if two carbon–oxygen white dwarfs with a combined mass of more than the Chandrasekhar limit of about 1.4 solar masses happen
The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach absolute zero, an event potentially followed by a reformation of the universe starting with another Big Bang.