Search results
Results from the WOW.Com Content Network
Fig 1. Construction of the first isogonic center, X(13). When no angle of the triangle exceeds 120°, this point is the Fermat point. In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible [1] or ...
Every acute triangle has three inscribed squares (squares in its interior such that all four of a square's vertices lie on a side of the triangle, so two of them lie on the same side and hence one side of the square coincides with part of a side of the triangle). In a right triangle, two of the squares coincide and have a vertex at the triangle ...
In geometry, a polygon (/ ˈ p ɒ l ɪ ɡ ɒ n /) is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its edges or sides. The points where two edges meet are the polygon's vertices or corners. An n-gon is a polygon with n sides; for example, a triangle is a 3 ...
Another special case is the point in polygon problem, in which one needs to determine whether a point is inside, outside, or on the boundary of a single polygon. In many applications, one needs to determine the location of several different points with respect to the same partition of the space.
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types ...
A winding number of 0 means the point is outside the polygon; other values indicate the point is inside the polygon. An improved algorithm to calculate the winding number was developed by Dan Sunday in 2001. [6] It does not use angles in calculations, nor any trigonometry, and functions exactly the same as the ray casting algorithms described ...
The vertices of the arrangement are isolated points belonging to two or more lines, where those lines cross each other. [ 1 ] The boundary of a cell is the system of edges that touch it, and the boundary of an edge is the set of vertices that touch it (one vertex for a ray and two for a line segment).
The line through both Soddy centers, called the Soddy line, also passes through the incenter of the triangle, which is the homothetic center of the two Soddy circles, [6] and through the Gergonne point, the intersection of the three lines connecting the intouch points of the triangle to the opposite vertices. [7]