enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    Its growth rate is similar to , but slower by an exponential factor. One way of approaching this result is by taking the natural logarithm of the factorial, which turns its product formula into a sum, and then estimating the sum by an integral: ln ⁡ n ! = ∑ x = 1 n ln ⁡ x ≈ ∫ 1 n ln ⁡ x d x = n ln ⁡ n − n + 1. {\displaystyle \ln ...

  3. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    The falling factorial occurs in a formula which represents polynomials using the forward difference operator ⁡ = (+) , which in form is an exact analogue to Taylor's theorem: Compare the series expansion from umbral calculus

  4. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    For any fixed b not equal to 1 (e.g. e or 2), the growth rate is given by the non-zero time τ. For any non-zero time τ the growth rate is given by the dimensionless positive number b. Thus the law of exponential growth can be written in different but mathematically equivalent forms, by using a different base.

  5. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of n {\displaystyle n} .

  6. Double exponential function - Wikipedia

    en.wikipedia.org/wiki/Double_exponential_function

    Factorials grow faster than exponential functions, but much more slowly than double exponential functions. However, tetration and the Ackermann function grow faster. See Big O notation for a comparison of the rate of growth of various functions. The inverse of the double exponential function is the double logarithm log(log(x)).

  7. Relative growth rate - Wikipedia

    en.wikipedia.org/wiki/Relative_growth_rate

    Relative growth rate (RGR) ... In terms of differential equations, if is the current ... The hourly growth factor is 8, which means that for every 1 at the beginning ...

  8. Doubling time - Wikipedia

    en.wikipedia.org/wiki/Doubling_time

    For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%). When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all ...

  9. Paris' law - Wikipedia

    en.wikipedia.org/wiki/Paris'_law

    In a 1961 paper, P. C. Paris introduced the idea that the rate of crack growth may depend on the stress intensity factor. [4] Then in their 1963 paper, Paris and Erdogan indirectly suggested the equation with the aside remark "The authors are hesitant but cannot resist the temptation to draw the straight line slope 1/4 through the data" after reviewing data on a log-log plot of crack growth ...