Search results
Results from the WOW.Com Content Network
In the Gaussian system, unlike the ISQ, the electric field E G and the magnetic field B G have the same dimension. This amounts to a factor of c between how B is defined in the two unit systems, on top of the other differences. [3] (The same factor applies to other magnetic quantities such as the magnetic field, H, and magnetization, M.)
The ampere-turn system is constructed in a similar way by considering magnetomotive force and magnetic field strength to be electrical quantities and rationalizing the system by dividing the units of magnetic pole strength and magnetization by 4 π. The units of the first two quantities are the ampere and the ampere per centimetre respectively.
Carl Friedrich Gauß in 1828, aged 50 years old. The gauss (symbol: G, sometimes Gs) is a unit of measurement of magnetic induction, also known as magnetic flux density.The unit is part of the Gaussian system of units, which inherited it from the older centimetre–gram–second electromagnetic units (CGS-EMU) system.
Magnetic field lines form in concentric circles around a cylindrical current-carrying conductor, such as a length of wire. The direction of such a magnetic field can be determined by using the "right-hand grip rule" (see figure at right). The strength of the magnetic field decreases with distance from the wire.
The maxwell is a non-SI unit. [8] 1 maxwell = 1 gauss × 2. That is, one maxwell is the total flux across a surface of one square centimetre perpendicular to a magnetic field of strength one gauss. The weber is the related SI unit of magnetic flux, which was defined in 1946. [9] 1 maxwell ≘ 10 −4 tesla × (10 −2 metre) 2 = 10 −8 weber
In the electric and magnetic field formulation there are four equations that determine the fields for given charge and current distribution. A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by ...
The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by q m (Wb) = μ 0 q m (Am).
In physics, magnetic pressure is an energy density associated with a magnetic field. In SI units, the energy density of a magnetic field with strength can be expressed as = where is the vacuum permeability. Any magnetic field has an associated magnetic pressure contained by the boundary conditions on the field.