Search results
Results from the WOW.Com Content Network
The angular diameter of the Sun, from a distance of one light-year, is 0.03″, and that of Earth 0.0003″. The angular diameter 0.03″ of the Sun given above is approximately the same as that of a human body at a distance of the diameter of Earth. This table shows the angular sizes of noteworthy celestial bodies as seen from Earth:
The size of solid bodies does not include an object's atmosphere. For example, Titan looks bigger than Ganymede, but its solid body is smaller. For the giant planets, the "radius" is defined as the distance from the center at which the atmosphere reaches 1 bar of atmospheric pressure. [11]
This diagram shows various possible elongations (ε), each of which is the angular distance between a planet and the Sun from Earth's perspective. In astronomy, a planet's elongation is the angular separation between the Sun and the planet, with Earth as the reference point. [1] The greatest elongation is the maximum angular separation.
English: Comparison of angular diameter of the Sun, Moon and planets with the International Space Station (as seen from the surface of the Earth), the 20/20 row of the Snellen eye chart at the proper viewing distance and typical human visual acuity. The dotted circles represent the minimum angular size (when the celestial bodies are farthest ...
The angular size redshift relation for a Lambda cosmology, with on the vertical scale megaparsecs. The angular size redshift relation describes the relation between the angular size observed on the sky of an object of given physical size, and the object's redshift from Earth (which is related to its distance, , from Earth
The "width" of the figure is due to the equation of time, and its angular extent is the difference between the greatest positive and negative deviations of local solar time from local mean time when this time-difference is related to angle at the rate of 15° per hour, i.e., 360° in 24 h. This width of the analemma is approximately 7.7°, so ...
The origin is the Sun's center, the plane of reference is the ecliptic plane, and the primary direction (the x-axis) is the March equinox. A right-handed rule specifies a y-axis 90° to the east on the fundamental plane. The z-axis points toward the north ecliptic pole. The reference frame is relatively stationary, aligned with the March equinox.
Comparison of angular diameter of the Sun, Moon, planets and the International Space Station. True representation of the sizes is achieved when the image is viewed at a distance of 103 times the width of the "Moon: max." circle. For example, if the "Moon: max."