Search results
Results from the WOW.Com Content Network
In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...
These are the coefficients of the characteristic polynomial of the deviator (() /), such that it is traceless. The separation of a tensor into a component that is a multiple of the identity and a traceless component is standard in hydrodynamics, where the former is called isotropic, providing the modified pressure, and the latter is called ...
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.
Plot of the Chebyshev polynomial of the first kind () with = in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D. The Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as () and ().
The collection of tensors on a vector space and its dual forms a tensor algebra, which allows products of arbitrary tensors. Simple applications of tensors of order 2 , which can be represented as a square matrix, can be solved by clever arrangement of transposed vectors and by applying the rules of matrix multiplication, but the tensor product ...
Cartesian tensors are widely used in various branches of continuum mechanics, such as fluid mechanics and elasticity. In classical continuum mechanics, the space of interest is usually 3-dimensional Euclidean space, as is the tangent space at each point.
Tensors are of importance in pure and applied mathematics, physics and engineering. Subcategories. ... Characteristic polynomial; Codazzi tensor; Contorsion tensor;
The space of symmetric tensors of order r on a finite-dimensional vector space V is naturally isomorphic to the dual of the space of homogeneous polynomials of degree r on V. Over fields of characteristic zero, the graded vector space of all symmetric tensors can be naturally identified with the symmetric algebra on V.