Search results
Results from the WOW.Com Content Network
In particle physics, a lepton is an elementary particle of half-integer spin (spin 1 / 2 ) that does not undergo strong interactions. [1] Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), including the electron, muon, and tauon, and neutral leptons, better known as neutrinos.
They are the fundamental objects of quantum field theory. Many families and sub-families of elementary particles exist. Elementary particles are classified according to their spin. Fermions have half-integer spin while bosons have integer spin. All the particles of the Standard Model have been experimentally observed, including the Higgs boson ...
Each generation contains two types of leptons and two types of quarks. The two leptons may be classified into one with electric charge −1 (electron-like) and neutral (neutrino); the two quarks may be classified into one with charge − 1 ⁄ 3 (down-type) and one with charge + 2 ⁄ 3 (up-type).
From these conclusions about plants and animals, two of the three tenets of cell theory were postulated. 1. All living organisms are composed of one or more cells 2. The cell is the most basic unit of life. Schleiden's theory of free cell formation through crystallization was refuted in the 1850s by Robert Remak, Rudolf Virchow, and Albert ...
All leptons carry a lepton number L = 1. In addition, leptons carry weak isospin, T 3, which is − 1 / 2 for the three charged leptons (i.e. electron, muon and tau) and + 1 / 2 for the three associated neutrinos. Each doublet of a charged lepton and a neutrino consisting of opposite T 3 are said to constitute one generation of ...
The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson. The Standard Model is renormalizable and mathematically self-consistent; [ 1 ] however, despite having huge and continued successes in providing experimental predictions, it does leave some unexplained ...
The lepton and baryon asymmetries affect the much better understood Big Bang nucleosynthesis at later times, during which light atomic nuclei began to form. Successful synthesis of the light elements requires that there be an imbalance in the number of baryons and antibaryons to one part in a billion when the universe is a few minutes old. [ 2 ]
The neutrino [a] was postulated first by Wolfgang Pauli in 1930 to explain how beta decay could conserve energy, momentum, and angular momentum ().In contrast to Niels Bohr, who proposed a statistical version of the conservation laws to explain the observed continuous energy spectra in beta decay, Pauli hypothesized an undetected particle that he called a "neutron", using the same -on ending ...