Search results
Results from the WOW.Com Content Network
In thermodynamics, the chemical potential of a species is the energy that can be absorbed or released due to a change of the particle number of the given species, ...
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
In electrochemistry, the electrochemical potential of electrons (or any other species) is the total potential, including both the (internal, nonelectrical) chemical potential and the electric potential, and is by definition constant across a device in equilibrium, whereas the chemical potential of electrons is equal to the electrochemical ...
In this case, the chemical potential of a body is the infinitesimal amount of work needed to increase the average number of electrons by an infinitesimal amount (even though the number of electrons at any time is an integer, the average number varies continuously.): ( ,) = ( ), where F(N, T) is the free energy function of the grand canonical ...
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...
N i is the number of particles (or number of moles) composing the ith chemical component. This is one form of the Gibbs fundamental equation. [10] In the infinitesimal expression, the term involving the chemical potential accounts for changes in Gibbs free energy resulting from an influx or outflux of particles.
As originally formulated by Benjamin Widom in 1963, [1] the approach can be summarized by the equation: = = where is called the insertion parameter, is the number density of species , is the activity of species , is the Boltzmann constant, and is temperature, and is the interaction energy of an inserted particle with all other particles in the system.
COSMO-RS (short for COnductor like Screening MOdel for Real Solvents) [1] [2] [3] is a quantum chemistry based equilibrium thermodynamics method with the purpose of predicting chemical potentials μ in liquids. It processes the screening charge density σ on the surface of molecules to calculate the chemical potential μ of each species in ...