Search results
Results from the WOW.Com Content Network
A NestedSampler is part of the Python toolbox BayesicFitting [9] for generic model fitting and evidence calculation. It is available on GitHub. An implementation in C++, named DIAMONDS, is on GitHub. A highly modular Python parallel example for statistical physics and condensed matter physics uses is on GitHub.
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...
For example, the individual components of a differential white blood cell count must all add up to 100, because each is a percentage of the total. Data that is embedded in narrative text (e.g., interview transcripts) must be manually coded into discrete variables that a statistical or machine-learning package can deal with.
A self-organizing map (SOM) or self-organizing feature map (SOFM) is an unsupervised machine learning technique used to produce a low-dimensional (typically two-dimensional) representation of a higher-dimensional data set while preserving the topological structure of the data.
Orange is an open-source software package released under GPL and hosted on GitHub.Versions up to 3.0 include core components in C++ with wrappers in Python.From version 3.0 onwards, Orange uses common Python open-source libraries for scientific computing, such as numpy, scipy and scikit-learn, while its graphical user interface operates within the cross-platform Qt framework.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
The goal of the pattern is to keep the in-memory representation and the persistent data store independent of each other and the data mapper itself. This is useful when one needs to model and enforce strict business processes on the data in the domain layer that do not map neatly to the persistent data store. [2]
The terms schema matching and mapping are often used interchangeably for a database process. For this article, we differentiate the two as follows: schema matching is the process of identifying that two objects are semantically related (scope of this article) while mapping refers to the transformations between the objects.