Search results
Results from the WOW.Com Content Network
Eliminate ambiguous or non-significant zeros by using Scientific Notation: For example, 1300 with three significant figures becomes 1.30 × 10 3. Likewise 0.0123 can be rewritten as 1.23 × 10 −2. The part of the representation that contains the significant figures (1.30 or 1.23) is known as the significand or mantissa.
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
log(10) = 1 + log(1) = 1; The first step in approximating the common logarithm is to put the number given in scientific notation. For example, the number 45 in scientific notation is 4.5 × 10 1, but one will call it a × 10 b. Next, find the logarithm of a, which is between 1 and 10.
The 1 is carried to the left, and the 0 is written at the bottom of the rightmost column. The second column from the right is added: 1 + 0 + 1 = 10 2 again; the 1 is carried, and 0 is written at the bottom. The third column: 1 + 1 + 1 = 11 2. This time, a 1 is carried, and a 1 is written in the bottom row. Proceeding like this gives the final ...
Graphical interpretation of the parallel operator with =.. The parallel operator ‖ (pronounced "parallel", [1] following the parallel lines notation from geometry; [2] [3] also known as reduced sum, parallel sum or parallel addition) is a binary operation which is used as a shorthand in electrical engineering, [4] [5] [6] [nb 1] but is also used in kinetics, fluid mechanics and financial ...
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time.In Albert Einstein's 1905 paper, On the Electrodynamics of Moving Bodies, the theory is presented as being based on just two postulates: [p 1] [1] [2]
At Bell Labs, Samuel Williams and George Stibitz completed a calculator which could operate on complex numbers, and named it the 'Complex Number Calculator'; it was later known as the 'Model I Relay Calculator'. It used telephone switching parts for logic: 450 relays and 10 crossbar switches.