Search results
Results from the WOW.Com Content Network
Like the surface field drainage systems, the subsurface field drainage systems can also be differentiated in regular systems and checked (controlled) systems. Controlled drainage system When the drain discharge takes place entirely by gravity, both types of subsurface systems have much in common, except that the checked systems have control ...
Map of a well field for subsurface drainage with radial flow across concentrical cylinders representing the equipotentials. Both systems serve the same purposes, namely water table control and soil salinity control. Both systems can facilitate the reuse of drainage water (e.g. for irrigation), but wells offer more flexibility.
Drainage options for the construction industry include: Point drainage, which intercepts water at gullies (points). Gullies connect to drainage pipes beneath the ground surface, so deep excavation is required to facilitate this system. Support for deep trenches is required in the shape of planking, strutting or shoring. Channel drainage, which ...
In geotechnical engineering, watertable control is the practice of controlling the height of the water table by drainage.Its main applications are in agricultural land (to improve the crop yield using agricultural drainage systems) and in cities to manage the extensive underground infrastructure that includes the foundations of large buildings, underground transit systems, and extensive ...
A drainage equation is an equation describing the relation between depth and spacing of parallel subsurface drains, depth of the watertable, depth and hydraulic conductivity of the soils. It is used in drainage design. Parameters in Hooghoudt's drainage equation. A well known steady-state drainage
Geoprofessions is a term coined by the Geoprofessional Business Association to connote various technical disciplines that involve engineering, earth and environmental services applied to below-ground ("subsurface"), ground-surface, and ground-surface-connected conditions, structures, or formations.
Agricultural land drainage has agricultural, environmental, hydrological, engineering, economical, social and socio-political aspects (Figure 1). All these aspects can be subject of drainage research. The aim (objective, target) of agricultural land drainage is the optimized agricultural production related to: reclamation of agricultural land
Subsurface drainage to ditches offers a way to remove excess water from agricultural fields, or vital urban spaces, without the erosion rates and pollution transport that results from direct surface runoff. However, excess drainage results in recurring drought induced crop yield losses and more severe urban heat island or desiccation issues.